

Speaker: Kyungyeol Gu Virtual Lab. Inc.

O About us

About us

ABOUT US

Introduction

Members

We started this business to break barriers and help everyone do their own simulation in easy-to-learn and user-friendly web environment.

Our proprietary web-based simulation service 'Materials Square', designed with an intuitive interface to the computing environment of the cloud server, provides a 'comprehensive integrated simulation environment offering service' that only pays for services of using.

Virtual Lab. Inc.
2016/01/28
1716, 49, Achasan-ro 17-gil, Seongdong-gu, Seoul, South Korea
Web-based Simulation Platform (Materials Square) Simulation Consulting

New Materials Discovery - Problems

Platform: The SOLUTION

ONLY

Pay-Per-Use

Materials R&D Platform

(\$0.25/CPU Hour)

Modeling UI

Simulation Engines

Pre/post processing

Cloud HPC

Contents

Which Visualizer is Suitable for Your Research?

- 1 Introduction
- 2 Structure Visualizer
- 3 Conclusion
- 4 Q&A

- 1 Introduction
- Which visualizer you used?

2 Structure visualizer

Visibility

Edit

Analysis

Performance

Visibility

2 Structure visualizer

Visibility

Edit

Analysis

Performance

Atom

- > Position/Type
- > Rotation
- > Translation
- > Permutation
- > ...

Lattice (Cell)

- > Lattice Parameters
- > Space/Point Group
- > Clone (supercell)
- > Vacuum
- > Cleave Surface
- **)** ...

- > Bond order
- > Bond type
- > Bond length
- > Charge
- > ...

Database search

Crystal structure search

Don't find crystal structure file

Connect Materials Project Database

Materials Square's edit feature

Cell Edit (supercell, cleve etc.)

Materials Square's edit feature

Organic structure builder be scheduled to February.

Draw atom

Atom draw using Mouse

Draw with GUI visually easy

Manipulate edit

Selected atom edit in detail

Conformer search

Using inner Forcefield

Roughly drawn structure cleaning

Searching isomer

Structure visualizer

Edit

Cell transformation

Characterized to inorganic material
Cell transformation
Use manually

Data export

Structure file convert to POSCAR

Calculation Input

2 Structure visualizer

Visibility

Edit

Analysis

Performance

Electronic structure

- > Density of States
- > Charge density
- > Band structure
- > Orbital surface
- > ...

Atomic structure

- > RDF
- > Defects
- > Dislocation analysis
- > Voronoi analysis
- **>** ...

Energetics

- > Total Energy
- > Binding Energy
- > Gibbs Free Energy

) ...

RDF

Analysis radial distribution function

Which Visualizer is Suitable for Your Research?

Analysis

Cluster analysis

Analysis how many cluster in system

OVITO (Python interface)

- Automate data visualization and analysis steps.
- Integrate OVITO's data I/O, analysis and rendering capabilities into custom workflows or Python programs.
- Extend OVITO capabilities by developing new modifiers or viewports layers that integrate into the graphical user interface.

RDF

Analysis radial distribution function

Which Visualizer is Suitable for Your Research?

VMD (Tk console)

 VMD provides embedded scripting languages (Python and Tcl) for the purpose of user extensibility.

VESTA (XRD pattern)

XRD pattern
Set source wavelength
Crystal information

Analysis

MatSQ (Charge Density)

Charge density observe

MatSQ (Simulated STM)

Simulated STM image observe

2 Structure visualizer

Visibility

Edit

Analysis

Performance

Benchmark Device Hardware

Hardware Overview:

Model Name: MacBook Pro Model Identifier: MacBookPro16,2

Processor Name: Quad-Core Intel Core i5

Processor Speed: 2 GHz

Number of Processors: 1
Total Number of Cores: 4

L2 Cache (per Core): 512 KB L3 Cache: 6 MB Hyper-Threading Technology: Enabled Memory: 16 GB Visualizer Benchmark test 1

CPK Style representation

No bonding, only ball with default value

Visualizer Benchmark test 2

Bonding style representation

No balls, Only bonding with default value

Visualizer Benchmark (atom drawing)

CPU Usage(%)

# of Atoms	VMD	VESTA	Avogadro	OVITO	MatSQ
1 K	32.1	19.0	17.9	18.6	18.1
10 K	48.3	16.9	18.6	18.3	18.5
20 K	47.5	15.9	17.4	18.4	18.3
40 K	45.8	16.8	19.2	18.7	18.3
80 K	59.4	18.1	18.0	18.6	18.3
100 K	45.6	Can't load	18.4	19.5	19.0

Mem Usage(%)

# of Atoms	VMD	VESTA	Avogadro	OVITO	MatSQ
1 K	0.7	0.2	0.2	0.2	0.2
10 K	0.7	0.2	0.2	0.2	0.2
20 K	0.7	0.2	0.2	0.2	0.2
40 K	0.8	0.2	0.2	0.2	0.2
80 K	0.9	0.2	0.2	0.2	0.2
100 K	1.0	Can't load	0.2	0.2	0.2

Performance

Visualizer Benchmark (bond drawing)

CPU Usage(%)

of Atoms VMD **VESTA** 47.1 16.6 1 K 16.1 47.4 10 K 47.8 16.6 20 K 48.8 16.7 40 K 49.5 18.0 80 K Can't load 47.8 100 K

Mem Usage(%)

# of Atoms	VMD	VESTA
1 K	0.8	0.2
10 K	1.3	0.2
20 K	1.7	0.2
40 K	3.8	0.2
80 K	14.7	0.2
100 K	23.6	Can't load

Conclusion

- > Combine several visualizer's features
- > Make your visualizer skill
- >Your suitable visualizer made by You

Q & A

- END -

Appendix

Performance – Hardware spec

Prepare test structure set

<Avogadro>

- 1. Draw C atom in the Avogadro window
- 2. Add Unitcell
- Supercell build (to 1K, 10K, 20K, 40K, 80K, 100K atoms)
- 4. Export to xyz file

<All visualizer>

- 1. Import test set
- 2. Measure CPU, Memory, FPS

Test example

Visualizer Benchmark test 1

CPK Style representation

No bonding, only ball with default value

Visualizer Benchmark test 2

Bonding style representation

No balls, Only bonding with default value